NASA Technical Memorandum 87577

TRICCS: A PROPOSED TELEOPERATOR/ROBOT INTEGRATED
COMMAND AND CONTROL SYSTEM FOR SPACE APPLICATIONS

{BASA-TN~B87577) TRICCS: 1 PROPOSED N85-35637

TELEOPERATOR/ROBOT INTEGRATED COMNAKD AND

CONTRQOL SYSTEN FOR SPACE APPLICATIONS (RASA)

31 p HC AG3/MP AC1 CSCL 093 Uncles
s3s61 222¢7

RaLpH W. WiLL

Jury 1985

NNASA

National Aeronautics and
Space Admiristraton

Langley Research Center
Hampton, Virgima 23665

INTRODUCTION

A vide variety of robot programming languages (refs. 1-10) are available today,
but it has been estimated (ref. T) that in 1982, less than 10 percent of the robots
on the factory floor had actually been programmed. Most are manually taught. This
situation is attributed to a variety of deficiencies in these languages (refr. 1).
These deficiencies include excess complexity, poor comminications with external
devices, configuration dependency, lack of portability, and no provision for con-
current activities or miltiple arms. Some of these difficulties are associated with
the languages themselves and some, such as processor and netwvork architecture
problems, are related to the robot's real-time control or operating system. In any
event, robot programming languages are nov apparently more trouble than they are
worth.

One thing that mekes robot programming languages so cumbersome to use is the
fact that most are totally ignorant of the phyvsical environment in which the robot is
operating. Their data types are scalars and vectors while the robot is dealing with
spatial points, orientations, planes, and objects of various shapes. Several
investigators (refs. T7-10) have recognized the limitations of robot programming
languages without environment or world models and have considered schemes for
capturing and utilizing this information.

Another problem is the fact that most robot programming languages are quite
rightly directed toward the automated factory or assembly line applications. Little
effort has been given to addressing the somewhat special requirements of space
operations. The basic pu-pose of robots in space is to venture into a hostile
environment and, in conjunction with man (at least for the near term), to perform
repalr, test, and assembly operations. Such tasks are definitely not of a repeti-
tive, assembly line nature which lend themselves to manual teaching techniques. This
implies the need for a powerful, high level command language with the ability to
describe and deal with an undefined environment. The tasks will also not be fully
specified and will involve new and unexpected situations. This requires a very
flexibie system which is able to adapt to different modes of operation and to operate
at several levels. Many space operations, parily due to the lack of gravity, require
twn robot arms, which ‘mplies coordination algorithms, concurrent processing, and
sensor feedbhack.

Programming and checkout in the robot programming language mist be simple, fast,
ard prelerably interactive. so that programming time does not exceed task performance
time. Otherwise, nothing is gained over the teleoperator system. This is particu-~
larly true for space operations which mey be performed only once rather than repeated
as or an assembly line. The system will be used by people vho are trying to perform
complex, precise jobs via remote control. They are reither machine tool operators
nor computer scientists, so the available commands need to be clear, powerful, and
most importantly, very task oriented. The command set should also be readily
expandable via user-defined procedure and function calls. The ultimate goal should
be to incorporate an expert system/planner to further increase man's command power
and effiriency. Consideration must be given in the programming language to the fact
that the planner must decompose its high level commands into robot programming
languag= ccmmands and task invocations.

The requirement for fast, interactive programming and checkout conflicts with
what 1s known about the difficulty of describing concurrent operations and debugging

concurrent programs. Thus, some clear, unambiguous means of describing arm cocrdi-
nation and simultaneous moticns is needed. Also, arm collision avoidance, previously
left largely to the user, had bet*er be implicit and rigorous. System error
recovery, largely ignored by robot programming languages, becomes a necessity.

The high cost of space operations dictates a reliable system which is capable of
getting the job done somehow. This also requires a flexible system with backup modes
and alternatives with manual interaction at as many levels as possible. The role of
man has not been defined for space related robotics systems, but it will probably
represent an evolutionary progression from a "hands-on" teleoperator toward an
executive dealing with an expert system as robot systems get more sophisticated. It
is important to devise a system now which is capable of expanding and evolving and
wvhich has features to address future needs.

The Teleoperator/Robot Integrated Command and Control System (TRICCS) has two
basic objectives: (1) to address some of the deficiencies of robot programming
languages, particularly in the area of robotic system interfaces such as environment
knowledge base and sensor feedback; and (2) to investigate a powerful, flexible,
higher order language system capable of being used at several levels and of
supporting the evolution of a space related teleoperator/robotic system. This means
that the language must contain world model variables, sensor variables, constructs
designed for interactive use, and provisions for multiple arm and concurrent
operations. TRICCS has been designed to be embedded in a goal-directed robotic
system involving expert systems, an environment knowledge base, a vision system,
sensor feedback, and a manual interface where the aperator uses TV and computer-
generated displays.

Figure 1 shows a simplified block diagram for a goal-directed robotic system.
This system is composed of several hierarchical levels, each of which, for
operational flexibility, has been provided with an operator interface. The lowest
level is a teleoperator in which continuous menual motion commands from switches or
hand controllers are transformed into individual joint commands to preduce the
desired robot operation. On the second level, the operator becomes a programmer,
communicating with the robot programming language via a keyboard. Here, a primary
concern is loading the environment or domain knowledge. Two sublevels are provided:
(1) a sophisticated vision system which searchs for, identifies, and locates parts
and objects based on tabular CAD/CAM type information and directives in the program,
and (2) a manual object identification and definition mode if no vision system is
available or if no CAD/CAM data exist for particular items. The manual definition
mode, described in the Declaration and Definition of Variables Section, is cumbersome
and time consuming, but it is treated in some detail here since no implementable
vision system exists and a manual mode is essential for {lexibility.

The third and highest level of the goal-directed robot involves an expert
system/planner which is defined for our purposes to be any program that uses goals
supplied by an executive operator to perform complex tasks. These tasks are
accomplished with the aid of a fact and rule knowledge base which might also be
supplied by CAD/CAM information on assembly and manufacturing techniques, sequences,
and tolerances. Complex tasks are decomposed into robot programming language
commands and procedure calls using the known rules and sequences. Peading from the
bottom up, figure 1 might be considered to represent an evolution of a goal-directed
robot system. The present effort is concerned with a rcbot programming language
which fits within this system model in terms of data communications and interfaces.

fo

A summary of the language is given in Appendices I and II. Appendix III shows
several simple programming examples.

TRICCS Application and Workstation

TRICCS includes a robot programming language aimed primarily toward learning
to deal with physical environment or domain knowledge base iuformation as a next step
towvard the goal-directed robot system of figure 1. Its data types are physical
entities such as points, directions, lines, planes, and objects, with which a robot
is expected to deal. Basic operators to manipulate these data types are provided in
addition to the robot system commands. The TRICCS language contains TASKs, a
procedure-like feature with parameters, which allow fundamental functional units
to be defined and then called to create more and more complex operations. TASKs
make interactive programming (TRICCS has ar. interactive or immediate mode) much
easier and also make TRICCS programs much easier to read. TRICCS also has provisions
to control multiple arms or devices (addressing them by name) and for specifying that
more than one command, possibly involving different arms, be carried out
simultaneously or concurrently. It should be noted that this in itself does not
provide inter-arm coordination.

A real stumbling tlock to the interaction of robot programming languages with
domein knowledge bases has apparently been getting the physical domain knowledge into
the knowledge base in a suitable form. In figure 1 this is done by a vision system
which scans the scene until an object is recognized; determines; what it is from a
table of information on objects it is expected to encounter, and then enters the
pertinent identification, location, orientation, and size data into the knowledge
base. While such a 3-D vision system identifier is not currently availabdle, it is
technically feasible using either stereo cameras or laser scan techniques. Since it
is desirable that an operator be capable of describing objects which are not included
in the information tables, TRICCS incorporates an interactive, manual, TV-assisted
domain definition scheme. This is intended only as a back-up capability for an
operational system, but here it is used as a means of beginning the study of a robot
programming language which deals with the physical domain as described in a knowledge
base. When a 3-D vision system identifier becomes available, commands must be added
to the TRICCS language to perform such functions as searching for specific objects
and identifying unknown oblects.

Figure 2 shows a somevhat expanded block diagram of that part of the robotic
system dealt with in this report. This figure shows how TRICCS fits into the robot
command and control loop and illustrates the operator input levels for full manual or
teleoperator control and for command inputs as a programmer. It also indicates those
parts of the system which must operate in real time to implement sensor feedback. It
should be noted that, without continuous manual feedback (teleoperator mode), a set
of inverse dynamics equations must be solved in real time to produce accurate arm
trajectories and positioning. TRICCS also imposes significant computational loads
associated with the locating and display of environmental data.

Figure 3 shows a typical remotely controlled spacecraft with several robot arms
and pivoting TV cameras. This spacecraft would fly to a service or assembly
station in the vicinity of a shuttle or space station. It would attach itself to
the structure to e serviced or assembled and the manipulator arme used to perform
the required tasks. Figure 4 shows the layout of a possidle operator workstation to

be used in commanding and cc~trolling the robotic system of figure 3 using either
manual, teleoperator control or command input to TRICCS. At least two of the camera
outputs are displayed on TV monitors on the console. The cameras will be controlled
by a pressure-sensitive touch tablet and stylus or bty a mouse. The stylus or mouse
will have to contain a switch for zoom control. The display monitors must be capable
of superimposing lines and alphanumeric characters over the TV picture. Use of the
TV monitors for defining and displaying TRICCS program variables is described in the
Interactive Definition Section. The workstation also includes a program entry key-
board and an associated alphanumeric CRT which can display up to 24 text lines. The
keyboard will contain special function keys for frequently used TRICCS commands and
for CRT controul functions such as screen scroll. The functions of the work station
will be more fully described in subsequent sections.

TRICCS LANGUAGE DATA TYPES

TRICCS is a language where all data must be defined as being of a particular
type and the data types represent physical or spatial entities in the domain
environment of the robot. The following is a list and brief description of TRICCS
data types. Subsequent sections will describe the definition or declaration and the
manipulation of these data types:

POINT- A discrete point in space, respresented by three (x, y, z)
spatial coordinates.

LINE- The straight, directed locus between two points, represented by
its end points. Note that a line has finite length and
specific direction, f.e. a vector.

DIRECTION- A spatial orientation in a particular direction, and having no
length or spatial position, represented by 3 direction
cosines.

LENGTH- A scalar, real number representing a distance but having no
direction.

PATH- A series of connected lines in space, represented by a series
points. PATHs may be used as a sort of manual obstacle
avoidance technique.

PLANE~ A finite, bounded flat surface in space, represented ty one
point and one line, two lines, three points, etc.

ANGLE- The included angle, represented by a real number, between two lines, two
directions, or two planes.

OBJECT- In its simplest form, a rectangular box in space represented by a point
wvhich locates one corner, three lengths which are the dimensions of the
box, and three directions of the sides. The object, therefore, has a
location and orientation and it is intended to be moved around and
reoriented. Objects are made up of combinations of basic shapes, which
include rods, boxes, balls, and cones. They will also have features
such as grasp points and holes. The basic shape's data will include
dimensions, orientation, attachment point, surface characteristics,

etc. Hole and grasp-point data will include location, orientation, and
size. The description of objects for a vision system identifier is
quite complex (ref. 11). A simplified description containing only
location and orientation information for compound objects, etc.,
follows.

Data Structure for Object

NAME: ALFA

LOCATION: x, ¥, 2z - in world coordinates
ORIENTATION: a, B, v - i orld coordinates
ELEMENT LST: “ELEMENT

ATTACH_LST: “OBJECT

(TYPE: BOX, ROD, CONE, BALL

S1ZE: (a, b, c), (4, £), (41, dp, 2), d

LOCATION: x, ¥y, z ~ with respect to prev us
element or object

ELEMENT'< ORIENTATION: o, B, Y - with respect to previous

element or object

GRASP_PT LST: “GRASP_PT

HOLE LST: “HOLE

LNEXI‘_ELEMENT: “ELEMENT

IDENT: ALFA
LOCATION: x, y, 2 ~ with respect to element
coordinates
HOLE ORIENTATION: a, B, Y - with respect to element
coordinates
DIAMETER: LENGTH
NEXT_HOLE: ~ HOLE

IDENT: ALFA
GRASP_PT{ LOCATION: x, y, z ~ with respect to element
coordinates
APPROACH DIR: a, B, Y ~ with respect to element

coordinates
NEXT PT: ‘GRASB_PT

The fact that there are multiple grasp points and holes means that the
one desired will have to be identified by name (IDENT) to a routine
that picks up an object or inserts a part into a hole. The INRANGE
runtime function is used to determine if the combination of

location and orientation for a hole or grasp point is within the
physical capability of the arm. A NIL 1list will denote that there are
no grasp points or holes on an element of an object. If an object may
be grasped anywhere, this will be designated by assigning the name
"ALL" to the identifier of its grasp point. The approach direction
will then %e calculated from the geometry of the object. If two
oblects are attached to one another during assembly, a8 run-time library
routine, ATTACH, is used to denote this via the ATTACH_LST list. This
allows many objects to be bound together.

[eaN

SPEED- A scalar number representing relative speed of arm or camera motion,
could be expressed as levels (1..5) or as percent maximum.

SENSOR_LEV- A scalar number representing a level or sensor reading for a
manipulator or end effector could be expressed as levels or as
percent maximum.

BOOLEAN- 1logical true or false.

STRING- string of characters for prompts and messages.

TRICCS allows one-dimensional arrays of all data types -
ARRAY [0..5] of <type>.

The declaration and definition (initialization) of these data types are described in
the next section.

Declaration and Definition of Variables

Variables of geometric data types may be declared and defined either statically
or interactively. Static definition is accomplished from the keyboard by simply
typing in values for the variable's location, orientation, etc. Interactive
definition uses the CRT displays and tablet or mouse to identify locations of
critical points in order to describe the variable. Fixed domain features such as
tool boxes. parts bins, and assembly points may be entered directly from data files.

Static Definition
DEFINE X : POINT = 6.5, 10.2, -3.1

DEFINE Y : LINE = 6.5, 8.4, 1.3; 3.1, 5.2, 2.3

DEFINE L : LINE

]
~
*
d)

g
>

where Y.END is a run time routine which returns the second, or terminating point of
LINE Y which equals (3.1, 5.2, 2.3).

If the definition 1s incomplete, the operator will he prompted fcr the remainder.

Interactive Definition
DEFINE X : POINT

Typing a "return" without the "=" and the variable's value puts the system in
interactive DEFINITION mode and transfers control to the CRT displays and the tadblet
or mouse controllers. Small cross hairs .-:.- will be displayed on the CRT

screen superimposed over the TV picture. Variable definition is accomplished by
moving this "spot in space" with a three axis hand controller. The spot is rate

ORIGINAL PAZE IS
OF POOR QUALITY

controlled in cylindrical coordinates (centered on the "world" coordinate system) as

follows:
2] up/down

\‘<\\ ’/’/;r' right/left (tangential)
“‘//' \\\\k in/out (radial)

The spot would be displayed on the two TV monitors in perspective and could be used
to locate a point in space which is "marked" with the trigger button to enter the
location into the variable. The display will remain in definition mode displaying
the data already entered, with lines to define the variable so far and a blinking
line to show the line presently being defined. For example, to define a LINE
variable, the cross hairs of both CRT screens are centered on the desired point for
the beginning of the LINE and the trigger is pressed to enter that point. For a LINE
definition, the system would remain in input mode until another point, the end of the
LINE, is defined. The LINE variable would be displayed until the operator either
verified its correctness, or moved one or both ends until it is correct. Other data
types have different definition sequences required to completely define the

variable. The operator will be prompted at each step as to what is required next.

trigger to enter data

The current position of the robot arm may be used to define a POINT variable
and/or the current orientation of the manipulator may be used to define a DIRECTION
variable:

MARK X : POINT
DIRECTION
A previously defined variable may be opened for change or redefinition by the command
CHECK X

The system will go into input mode with X displayed on the CRT screens and the
locations corrected or verified as described above. To remove a variable from the
program's directory:

FORGET X

This will prompt the operator with "ARE YOU SURE YOU WANT TO FORGET LINE X?" if X
is of type LINE and displays X on the CRT screens as a safety precaution to the
inadvertent removal of variables. Geometric variables may be displayed on the CRT
screens by

SHOW X

where X may be a POINT, LINE, PLANE, OBJECT, PATH or DIRECTION. Up to three
variables may be shown simultaneously, each appearing in a primary color; red, blue,
or yellow with its name in the same color at the bottom of the screen. A variadle
may be removed from the display by

ERASE X

A listing of all current program variables and their types may be obtained Yty
LIST VARS

vhich appears on the alphanumeric CRT.

System Sensor/Actuator Names

The robotic system may consist of one or more robot arm with associated sensors
and two or more remotely controlled TV cameras as shown in figure 3. The TV camera
outputs are displayed on two CRT screens as shown in figure 4. Each of these
controlled hardware elements must have & name or program identifier associated with
them in order that the TRICCS program may direct commands to the proper device.

There are four basic data types in TRICCS which relate to external devices:
ARM, SENSOR, CAMERA, and SCREEN, Together, they comprise a compound data type
(record) called SYSTEM. There are also several arrays of input/output ports for
device command, feedback, and video signals. These are PORTIN, PORTOUT, VIDEOIN, and
VIDEOUT. The external device variables are declared and linked to the appropriate
input /output as follows:

DEFINE ARM LEFT = KOUT1*PORTOUT (1]

DEFINE ARM RIGHT = KOUT2#*PORTOUT [2]

DEFINE SENSOR LEFT/FORCE = KIN1*PORTIN{1]

DEFINE SENSOR RIGHT/TACTLE = KIN2#*PORTIN(2]
DEFINE CAMERA CAM1 = XOUT3#*PORTOUT[3], VIDEOIN[1]
DEFINE SCREEN STARBRD = VIDEOUT {1]

where KOUT1, KIN1, etc., are gains on the I/0 signals. Actually, this my be any
expression, such as

KOUT1*PORTOUT [1] + BIASOUT

Note that sensors must be associatcd with a previously declared arme The definiticn
of external devices will be performed at system cat-up time and remain fixed. The
statement '

SHOW SYSTEM

will display the current system configuvration on the alphanumeric CRT. Motion
commands directed to a porililcular arm will be

LEFT/ <ARM COMMAND> i.e. LEFT/GOO X

Further, there will be a "running default” in the case of multiple arms. Once the
operator or program has said "LEFT/", all subsequent unprefixed arm commands will be
directed to the LEFT arm until, the occurrence of a "RIGHT/" command, whereupon the
default will btecome the RIGHT arm. Single arm systems require no prefix, regardless
of the name of the arm.

8

Sensors which must have names include those which are fed back to the TRICCS
program. These include fo.ce, torque, proximity, and tactile (touch) sensors. Since
these sensors are associated with the robot arms, the conditional and loop statements
utilizing their feedback (Sensor Feedback Section) must be prefixed by the
appropriate arm designator or use the default. The statement "IF LEFT/FORCE <.5 THEN
««." represents an implicit read of that sensor (ref. 12). Camera/display commands
are complicated by the fact that only combinations of camera and display screen may
be commanded; i.e., no camera may be moved unless it is assigned to a display. The
CRT screens may be named PORT, to the left, and STARBRD, to the right. Cameras are
assigned to the screens with the DISPLAY command described in the Camera/Display
Commands Section and command format is "PORT/" as in arm commands. Default rules are
also identical to the robot arm situation. TRICCS will check to insure that only
valid arm names precede arm motion commands and camera/display names precede
camera commands.

Arm Motion Commands

The robot arm motions are divided into three mutually exclusive types:
translation, orientation, and manipulator commands. Manipulator here denotes the
hand or end effector located at the tip of the arm and used to grasp or manipulate
the work piece. Translation commands involve translation motion of the tip of the
manipulator in Cartesian world coordinates fixed to the robotic system environment
and do not reorient the manipulator. Orientation commands change the direction in
which the manipulator is pointing without moving the tip of the manipulator. These
involve arm motions to compensate for the movement of the tip of the manipulator.
Manipulator commands involve only the roll and the opening and closing of the
manipulator itself.

Translation Commands:
GOTO X (POINT) - move the tip of the arm's manipulator to
the point represented by variable X

GO Y (LENGTH) - move for the distance Y in the direction that
the hand is pointing

FOLLOW 2 (PATH or LINE) - go to beginning of path Z and follow all
segments to its end

RETRACE Z (PATH or LINE) - go to the end of Z and follow all
segments in reverse order to its
beginning

Orientation Commands:
TURNTO X (DIRECTION) - reorient the hand in the direction
specified by X

POINTTO Y (POINT) - reorient the hand so that it points toward
the point Y

TRACK X (POINT) ~ continuously track a point during all
subsequent translation motions

TRACKOFF or another orientation command will cancel the TRACK cc .ad.
Manipulator Commands:

ROTATETO X (ANGLE) - rotate the manipulator hand about its ce;t--
line axis to the angle defined by X

ROTATE Y (ANGLE) - rotate the manipulator hand through an angle of

Y degrees
OPEN Z (% max or span distances) - open the manipulator fingers
an additional Z distance
CLOSE Z (% MAX or span distance) - close the manipulator fingers

an additional Z distance

OPENTO Z (% max or span distance) - move the manipulator fingers
(open or close) to the opening
span indicated by Z

Arm motion commands generate commands to the trajectory planner of figure 2.
Translation commands might produce a vector in space to represent the desired
position change and the orientation commands could generate a direction vector about
which the manipulator hand is to rotate with its magnitude representing the total
angle to rotate through.

Camera/Display Commands

There are a minimum of two and no maximum numbe: of TV cameras assocliated with
the teleoperator/robot system. These are used in pairs (d’.c¢played on two TV
screens) to locate and identify objects for the telec serator system and TRICCS
program. The cameras may be moved manually by hand controllers, voice commands, or
even eye movements. The cameras may be mounted on arms of their own or on the
working arms to enable better angles of vision. The cameras are assigned to TV
screens and may be moved under program control. The two CRT screens may be named
port and starboard, PORT and STARBRD, for the left and right screen, respectively.
The cameras will also ha.e names, say CAM1+CAM6, for example. To display the output
of CAMl1 on the left screen:

DISPLAY CAM1 ON PCRT
The camera motion commands then refer to the camera displayed on the screen addressed

PORT/LOOKAT K (POINT) - points the camera displayed on the PORT
screen (CAM 1) tovard the point X

LOOKAT LEFT - pc nts CAM1 to tip of LEFT arm's manipulator

LOOKIN Y (DIRECTION) - pcints CAM1 in the direction Y

b
(&)

Screen-oriented pitch and yaw camera commands (which correspond to the manual
commands using a camera control tablet or mouse) are

PORT/TILT A (ANGLE) - move CAML up or down through the angle A
PAN B (ANGLE) - move CAMl left or right through the angle B
and

ZOOM (<percent max>) - zoom CAMl in through the spe ified percentage
of zoom range

ZOOMTO (<percent max>) - zoom CAM1l in or out to the specified percent
of maximum zoom setting

The camera motion commands entered from the keyboard override any manual inputs
except during data definition but the manual mode is always active. The camera name
agsociated witt each TV display will be shown at the “op of each screen highlighted
in reverse video.
Tasks

TRICCS TASKs are simply a defined group of commands which perform a specific
function, similar to svbroutines and procedures. TASKs do not have locrl data like
procedures, but may be invoked with parameters or arguments. Up tr t (8)
versions of a TASK may exist specified by an optional version nunl the
appropriate commands. Tasks mgy be defined by

DEFINE TSKX (PARM1:TYPE,PARM2:TYPE...) : TASK

followed by the commands and terminated by an "END". Tasks are compiled and stored
for later invocation or modification by the command SAVE,

The command

SHOW TSKX (version number)
displays the text of TASK TSKX on the alphanumeric CRT screen associated with the
keyboard, whereupon it may be modified (edited). The optional version number
indicutes which version is desired. After editing, a task may be compiled and both
the source and compiled ccde saved by

SAVE TSKX (<version numoer>)
The command

FORGET TSKX (<version number>)
removes both the source and compiled code for the indicated version of TSKX library.

Tasks are called by

TSKX (PARM1, PARM2)

11

vhich calls the highest numbered version. Other versions mey be specified by
USE VERSION <version number> FOR TSKX

either in the calling program or entered from the keyboard prior to running the
program.

POINT type parameters may be literals or expressions
TSKX ((pTX + (.5, 2.1, 5.3)), PTl)

Simple or routine operations such as pick up, place, operate a button or switch,
etc., may be defined as TASKs and called with parameters specifying the location of
the activity. Parameters may be of any data type or the name of another TASK. TASKs
may be built hierarchically to define higher and higher level commands. A library of
basic TASKs will be available and some mechanism for user libraries to be included
will be developed.

Other Languag- Features and Sensor Feedback

The TRICCS language includes the normal conditional and loop features found in
most computer languages:

(1) IF <conditional> THEN
commands

ELSE
commands

END
(2) DO WHILE <conditional>
cormmands
END ‘
(3) REPEAT
commands

UNTIL <conditional>
any block may contain an

(4) EXITIF <conditional>

12

vhere the conditional expression may involve sensor signals such as force or
proximity which are fed back from the manipulator or arm. The senscr feedback is
also used in the following arm and manipulator motion commands:

GO UNTIL <conditional> - move in the direction the hand is pointing
urtil the condition is satisfied

OPEN UNTIL <conditional> - open the manipulator fingers until the
condition is met

CLOSE UNTIL <conditional> - close the manipulato= fingers until the
condition 1s mat

ROTATE UNTIL <conditional> - rotate the manipulator until the
condition is met

For example,
LEFT/CLOSE UNTIL FORCE>=GLASSBRK-.3
RIGHT/GO UNTIL TOUCH
OPEN UNTIL NOT TOUCH

ROTATE UNTIL TORQUE>TWISTOFF

General Commands
Any motior commands may be interrupted with

PAUSE

RESUME

PAUSE puts the system intc IMMEDIATE mode described in the next section, System
Operation, where interactive commands may be executed. Typing a command during a
PAUSEd condition will result in a system prompt asking whether you plan to continue
the previous ccmmnd. A "yes" will save the rest of that commani or program for
exscution after completion of the command which has been typed (and & RESUME). This
effectively permits a user to Iinsert steps while keeping his main command sequence in
"old."

PAUSE 4t is a programmed pause of At seconds, where
At 1s a real number.

13

Speed specification:
An optional speed attribute, in terms of percent maximum, may be imposed on any
motion command by

LEFT/GOTO X AT Z (SPEED)

The specified speed then becomes default speed for that arm until another speed
specification 1s directed to that arm. Direct speed changes may be applied inter-
actively by

LEFT/AT 2

will modify arm speed in mid-maneuver.

Combined cormands:

TRICCS commands are normally executed sequentially; cne cormand is completed
before the next is initiated. A currently executing TASK will complete before an
interactively entered command can begin. One exception to this is interactively no
matter what else is going on. Some commands, involving different elements of a
single arm, may be designated to occur simultaneously by

GOTO X AND POINT TO Y

The parser will check for a valid combination which involves no more than one each of
translation, orientation, and manipulator commands for a single arm. Semantically,
the commands will be timed to complete simultaneously.

The next question involves simultaneous commands for more than one arm, the arm
coordination problem. Like the obstacle avoidance problem, entered camera commands
which execute immediately the multi-arm coordination implementation involves
extensive logic (involving avoidance) which is considered to be beyond the scope of
this study of TRICCS. It can be said, however, that such commands could easily be
incorporated in TRICCS from a language or syntactic point of view as:

LEFT/GOTO X AND RIGET/GOTO Y

System Operation

The TRICCS robotic system illustrated in figure 2 and using the workstation
descrived in figure U is able to operate in several modes:

TELEOPERATOR - the lowest level of control where continuous manual control stick
inputs are supplied to the robot arms and cameras

IMMEDIATE - an interactive mode where each "RICCS command is executed
immediately and the system waits for another.

DEFINITION - the data definition for the domain knowledge base where the
cameras are selectabtle from the keyboard and are pivoted with the hand contrnllers or
touch tablets.

DEBUG - A checkout mode where arm motions are not actually executed, but are
displayed using a computer-generated graphic display which may be superimposed over
the TV display for additional realism.

MONITOR -~ A dynamic debug mode where the next command is displayed and the
system pauses waiting for manual verification before executing it.

PROGRAM - The system is executing under program control and manual inputs are
restricted to PAUSE and manual camera commands.

The hierarchy of operation of these modes is illustrated in figure S. For full
system flexibility, the operational modes should be able to operate in conjunction
with one another. There is no reason vhy additional data could not te defined while
a programmed activity is being performed. Also, PROGRAM mode should be capable of
pausing while another mode such as IMMEDIATE is used to do extra things or MONITOR is
entered to provide more checking for a few steps and then the program resumed at any
point.

When a program name is invoked, PROG1(PARM1,PARM2), the system is in PROGRAM
mode. This may be interrupted bty a programmed or interactively entered PAUSE, which
puts the system in a combination of TELEOPERATOR and IMMEDIATE mode with the program
execution suspended or on "hold" as described in the previous section. If no program
is executing, the system is also in the TELEOPERATOR/IMMEDIATE mode. Here, either
manual arm inputs or keyboard language commands msy be entered, with the keyboard
commands taking precedence. The system enters DEFINITION mode upon receipt of a
DFPINY coummand. UEFINITION mode does not suspend a program which may continue
executing while variables are being defined. The DEFINITION mode may be exited and
the variable definition abandoned by the command "MODEOFF"., DEBUG mode works with
both IMMEDIATE and PROGRAM modes. The command "DEBUG" is entered vhen no program is
running and sets up the displays and disables the arm commands. MONITOR mode works
only during PROGRAM mode and the command "MONITCR" is entered at any time during
program execution to put the system into what is basically a step mode. Both DEBUG
and MONITOR modes are exited by the command "MODEOFF". This command may be entered
at any time during program execution to exit MONITOR mode, but must be entered when
no program is executing for DEBUG mode.

For operation in a space environment with new and unexpected situations and
incompletely specified tasks, a robotic system will require a significant amount of
manual monitoring and intervention. This manual Interaction, to be efficient and
effective, must be at the highest possible level with the system providing
programmable support. 7The TRICCS hierarchical TASK structure with praprogrammed,
modifiable, parametrically callable functions to support manual and expert systems
(TASK descriptions would be a part of the fact/rule knowledge base of figure 1) is
consistent with this paradigm. In practice, robotic system operations in space will
involve the off-line programming and ~heckout of both generalized and specific task
functions to support on-line operations. Manual modes will provide backup capabdbility
for reliability and as the evolving robotic system becomes more sophisticated, less
monitoring will be required and manual intervention will be at a higher level. Both
the TRICCS language and ope:ational modes are aimed at the support of an evolving,
space orerations-oriented robotic system. Its purpose is to investigate areas of
system evolution such as knowledge bases, sensor feedback, and expert systems and
also to develop manual interfaces required for reliability in desling with these
areas of evolution and with the new and unexpected situations imposed by the space

environmer t.

15

It should be noted that TRICCS is not a "language" in the sense of requiring a
compiler and full language support. In its simplest form, INTERACTIVE mode, it is a
command parser/interpreter running in non-real tin: = shown in figure 2. It could
be written in PASCAL or Ada and called by operator input to generate proper motion
commands for the robot arms and TV cameras. Its run-time support routineg, which
will be extensive, would also be written in PASCAL or Ada. 7o implement
"precompiled” tasks or subroutines, the source code could be ccnverted to an
intermediate P-code-~like form and saved on a library file. The interpreter would
then execute the P-co. . However, since the TRICCS language involves direct hardware
commnication via sensor feedback, the execution portion may have to run in a
real-time environment.

Also, the requirement for multiple arm operations and coordination almost
dictates concurrent processing. It would make little sense to develop a concurrent
processing capability specifically for a robot programming language. Thus, TRICCS
will best be implemented as packages and tasks in Ada. The TRICCS TASKs would become
Ada tasks and could thus run concurrently, providing a powerful facility for
inter-arm coordination.

This would also make the TRICCS language readily expandable and extensidle. The
modularity afforded by Ada OBJECTS would make it easier to produce a robot
configuration independent system which would also benefit from Ada's portability.
References 6 and 13 investigate Ada implementations for robot systems and programming
languages.

Concluding Remarks

This report descridbes a proposed robot programmin, .anguage aimed at the
investigation of domain knowledge base interaction, manual interface, and sensor
feedback for space related robotic systems. These are essential for a goal-directed
robot system which provides the op>rational fiexibility required for space
operations. The system is designed for operation at several levels from a completely
manual teleoperator to a fully programmed system interacting with an expert
system/planner. All modes of system operation, including generation of the domain
knowledge base, have manual backup capabilities, Several operational modes are
provided for interactive debug, checkout, and monitoring. Sensor feedback and
milti~arm coordination requires real time, concurrent processing capability so that
the TRICCS system should be implemented as pickages and concurrent tasks ir Ada.

The TRICCS concept has been developed at LaRC as a robot programming language
research effort. It is not implemented either in hardware or software. It has
become clear during this study that several areas basic to the realization of a
system such as TRICCS require more work. These are: 1) the definition of a
vorld model knowledge base structure consistent with vision system identifier,
programming language and other interface requirements, 2) a 3-D vision/identification
system capable of generating the world model and relating its information to CAD/CAM
type of data. Attention to these two areas is essential bvefore a goal-directed
robotic system such as TRICCS is realizable.

1.

10.

12.

13.

REFERENCES

Soroka, Barry I.: "What Can't Robot Languages Do?,"” 13th International
Symposium on Industrial Robots & Robots 7, April 17-21, 1983, Chicago, Illinois.

Gruver, William A.; Soroka, Barry T.; Craig, John J. and Turner, Timothy L.:
"Evaluation of Ccmmercially Available Robot Programming Languages,"” 13th
International Symposium on Industrial Robots & Robots T, April 17-21, 1983,
Chicago, Illinois.

Shimano, Bruce E.; Geschke, Clifford C.; Spaulding, Charles H., III and Smith
Paul G.: "A Robot Programming System Incorporating Real Time and Supervisory
Control: VAL II". Robots 8 Conference Proceedings, Volume 2; June 4-T7, 1984,
Detroit, Michigan.

Bonner, Susan and Shin, Kang G.: "A Comparative Study of Robot Languages".
IEEE Computer, December 1982,

Mujtaba, M. S.; Goldman, P. and Binford, T.: "The AL Robot Prograrming
Language,”" Computers in Engineering 1982, Volume 2: Robots and Robotics,
Proceedings of the Second International Computer Engineering Conference, Aug.
15-19, 1982, San Diego, California.

Volz, R. A.; Mudge, T. N. and Gal, D, A.,: "Using ADA as a Rotot System
Programming Language,” 13th International Symposium on Industrial Robots and
Robots 7, April 17-21, 1983.

Kirschbrown, Richard H. and Dorf, Richard C.: "KARMA - A Knowledge~Based
Robot Manipulation System: Determining Problem Characteristics." Robots 6
Conference Proceedings, Volume 2, June b4-7, 1984, Detroit, Michigan.

Inoue, H.; Ogasawara, T.; Shiroshita, O., and Naito, O.: "Design and Imple-
nmentation of High-Level Robot Language,” Proceedings of 11th International
Symposium on Industrial Robots, October 7-9, 1981, Tokyo, Japan.

Barbera, Anthony J.; Fitzgerald, M. L.; Albus, James, S. and Haynes, Leonard
S.: "RCS: The NBS Real Time Control System," Robots 8 Conference Proceedings,
Volume 2, June 4~7, 1984, Detroit, Michigan.

Hayward, Vincent and Paul, Richard P.: "Robot Manipulator Control Using the
"C" Language Under UNIX." Proceedings of IEEE Workshop on Languages for
Computer Automation, November 7-9, 1983, Chicage, Illinois.

Kakazu. Y.; Okino, N. and Utsumi, K.: "Pattern Recognition Problem on Modeled
3-D Geometry." 1lth Internaticnal Symposium on Industrial Robots, October T7-9,
1981,

Chern, Ming-Yang; Chern, Mei-Ling; and Mocher, Thomus G.: "A Language Extension
for Sensor-Based Rcbotic Sys+tenms”, TEEE Workshop on Languages for Computer
Automation, November 7-9, 1983, Chicago, Illinois.

Buzzard, G. D.; and Mudge, T. N.: '"Cbject~Based Computing and the Ada
Programming Language."” IEEE Computer, March 1985.

[
-3

APPENDIX I
RUNTIME FUNCTIONS
A set of geometric operation and conversion utilities are provided in the form
of standard functions:

INTERSECTION (LINE, LINE)+POINT or nil
(PLANE, PLANE)*LINE or nil

NORMAL (LINE)+PLANE
(PLANE)»DIRECTION

LENGTH (LINE)*LENGTH
RECIPROCAL (DIRECTION)+*DIRECTION
DIRECTIONOF (LINE)+DIRECTION

INCLUDANG (LINE, DIRECTION)>ANGLE
PLANE, ETC

LINE (POINT, POINT)*LINE

PLANE (POINT, POINT, POINT)+PLANE
(POINT, LINE)

PATH (POINT, LINE, PT, ..ETC)+PATH
LINE.BEG (LINE)+POINT

LINE.END (LINE)+POINT

MIDPT (LINE)+>POINT

RELOCATE (OBJECT) - calculates new location and orientation for an
object

ATTACH (OBJECT1, OBJECT2) - defines a physical connection between two
oblects such that when one is moved (relocated)
the other is also moved

(POINT)

(LINE)*BOOLEAN - indicates whether the variahle is completely
INRANGE (PATH) within range (reach) of a robot arm

(HOLE)

(GRASP PT)

GRASP Y (Force) - close ranipulator until force builds up to specified level

CONTACT Y (Force) - move forward in direction hand is pointing until contact is made
with force level specified, sensed hy force sgensors

RELEASE - opposite of GRASP or CONTACT

CENTER - centers an object between the fingers by moving the arm in
the proper direction once one finger has made contact

APPENDIX II

TRICCS SUMMARY SHEET

DATA TYPES: POINT, ANGLE, PLANE, PATH, OBJECT, LENGTH, DIRECTION, ANGLE, SPEED,
FORCE

CODE BLOCK: TASK (PARAMETERS)
FORGET <NAME>
CHECK <NAME>
MARK <NAME> :POINT
: DIRECTION

DATA DISPLAY: SHOW <NAME<>
ERASE <NAME>
LIST VARS
DEFINE ARM <NAME> = <PORTOUT EXPRESSION>

DEFINE SENSOR <ARMNAME>/<NAME> = <PORTIN EXPRESSION>

DEFINE CAMERA <NAME> = <PORTOUT EXPRESSION>, VIDEOIN<CHANNEL>

DEFINE SCREEN <NAME> = VIDEOUT<CHANNEL>

SHOW SYSTEM
ARM MOTION:

TRANSLATION: GOTO <POINT>
GO <LENGTH>
FOLLOW <PATH>
RETRACE <PATH>

ORIENTATION: TURNTO <DIRECTION>
POINTO <POINT>
TRACK <POINT>
TRACKOFF

MANIPULATOR: ROTATETO<ANGLE>
ROTATE <ANGLE>
OPEN <% MAX>
CLOSE <% MAX>
OPENTO <% MAX>

CAMERA/DISPLAY ASSIGNMENT: DISPLAY <CAMERA NAME> ON <SCREEN NAME>

CAMERA MOTION: LOOKAT <POINT>
LOOKIN <DIRECTION>
TILT <ANGLE>
FAN <ANGLE>
ZOOM <% MAX>
ZOOMTO <% MAX>

20

TASKS: DEFINE <NAME> (PARM: TYPE: ...): TASK
END

<TASK> (PARMS)
CANCEL <TASK>
SHOW <TASK>
CONDITIONAL: IF <condition> THEN..ELSE..END
DO WHILE <condition>..END
REPEAT. .UNTIL <condition>
EXITIF <condition>
SENSOR FEEDBACK: GO UNTIL <condition>
(manipulator)
OPEN UNTIL <condition>
CLOSE UNTIL <condition>
ROTATE UNTIL <condition>
SPEED: AT <SPEED>
COMBINED: <TRANSLATION> AND <ORIENTATION> AND <MARIPULATOR>
GENERAL: PAUSE
RESUME
MODE CONTROL: DEBUG
MONITOR
MODEOFF

RUNTIME FUNCTIONS: INTERSECTION (<LINE>, <LINE>)+> <POINT>
(<PLANE>, <PLANE>)+<LINE>

NORMAL (<LINE>)*<PLANE>
{<PLANL>)+<DIRECTION>

LENGTY (<LINE>)+<LENGTH>
RECIPROCAL (<DIRECTION>)+<DIRECTION>
DIRECTICONOF (<LINE>)+<DIRECTION>

INCLUDANG (<LINE>, <PLANE>)+<ANGLE>
(<DIRECTION>, ETC)

LINE (<POINT>, <POINT>)»*<LINE>
21

22

PLANE (<POINT>, <POINT>, <POINT>)+<PLANE>
<POINT>, <LINE>

PATH (<POINT>, <LINE>, <POINTS>, ..)+ <PATH>
LINE. BEG (<LINE>)+<POINT>
LINE. END (<LINE>)+<POINT>
MIDPT (<LINE>)*<POINT>
RELOCATE (<OBJECTS>)
INRANGE <POINT>
<LINE>+ <BOOLEAN>
<PATH>
GRASP (<FORCE>)
CONTACT (<FORCE>)
RELEASE

CENTER

APPENDIX III

TRICCS PROGRAM EXAMPLES

Included here are *wo simple examples of the type of robot arm tasks which may
be programmed in TRICCS. They are intended to illustrate the flavor of TRICCS in
terms of language capability, run~time functions, and hierarchical program
structure. More complex %tasks will obvicusly require more extensive run-~time support
in terms of modular, preprogrammed functions, but these fit well within the framework

of TRICCS.
A. Push a Panel Button
BUTTON A ~ is a POINT representing the button to be operated

PANEL - is a PLANE representing the panel in which the button is
mounted

DEFINE PUSHBUTTON (BUTTON A: POINT: PANEL: PLANE) : TASK
GOTO BUTTON A
POINTIN (NORMAL (PANEL))
OPEN O

CONTACT BUTTON_F
END

where BUTTON F is the force level required to operate the button

B. Pick Up and Move a Block

A rectangular object may be represented by

Box. 2

Bex. 1

Box. 3

three lines as shown. These will be referred to as Box. 1, Box. 2, and Box. 3. It

should be noted that the coordinates of these lines change when the object is moved,
as defined by the function RELOCATE.

DEFINE MOVE (MYBOX: OBJECT; NEWLOG: POINT; NEWOR: DIRECTION): TASK
GET (MYBOX)

PUT (MYBOX, NEWLOC, NEWOR)
END

23

DEFINE GET (MYBOX: OBJECT): TASK
GOTO MIDPT (MYBOX.1l)
POINTIN DIRECTION (MYBOX.2)
ROTATETO DIRECTICT (MYBOX.2)
OPENTO LENGTH (MYBUX.3) - FUDGE
GO MIN(LENGTH(MYBOX.2) - FUDGE, MAXGRP)
GRASP BOX_F

where FUDGE is the desired manipulator clearance
and BOX_F is the force required to handle the box

DEFINE PUT (MYBOX: OBJECT; NEWLOC: PUINT; NEWOR: DIRECTION):

GOTO NEWLOC

POINTIN NEWOR

RELOCATE (MYBOX)

RELEASE

GO (-LENGTH (MYBOX.2))
END

2k

TASK

OF POOR QUALITY

ORIGINAL PAGE IS

waysAS 30qoy/a03e43doa|3] pajdasig-(eoy -1 3Jnbiry

_ $0AJS
IT0¥ S.Nedl I|ﬁ

(st13d0}
‘#2404 *v012130¢)
Spu0) SA0SUI
avjor
(*npyALpUL
sIjaevig ¢
¥01v¥1403131 P— v K13 3w099 10004
Lenumy ﬂ
spusww0) VP L OAY
uoy 308 131 1ju0) A
fepedg ;_r
ULIRTUTYY | it] (9°6°1°2 = 1d ASSV.)
ﬁ neg Y sbenbur *5pe | mouy voi3Ivy 90
ujweog Gujmmeabousgd 300y S I | UTE] viewog pavy 4
{enuey spunme))) :
a3we) [enURY
_ YU AIS TWVISNI.
«1d"ASSY OL V 1¥¥d 3IAOM.
J039301/49) JLIUP] $34%g WO
RN ‘A _ _ — W3AS VOISIA YiVO W/0V)
»FU_AIS 31vO0 SPUNENO) Y2498
«¥ 1¥¥4 31VI01. we3sAS uojsiA Spuvewo)
¥oj34u3400 IV asel
vivwog paweabouy
-
iy le——1 ssoormony | fuemesty o0
WM LL3901R ITMISSY. > S0wve1d/enshs 31003 NEYELT Y)

a5

[
1

Domain
Knowledge
Base

Operator

TRICCS
command

language

Y

Interrupts

Command parser

(Prograrmer)

Integrated
TV display

Interpreter

Data

1‘

Position/
orientation

TV

Camera
commands

commands

L_

TV Cameras

Trajectory
planner

m '
Position a

Position

Motion
commands

y

Arm dynamics

Sensors

& geometry

Individual
joint
commands

Servos

Manual
commands

Figure 2.- Teleoperator/Robot Integrated Command
Control System (TRICCS?

26

1

-

TV

Operator

(Teleoperator)

and

ORIGINAL PAGE 15
OF POOR QUALITY

27

Typical Space- Related Test and
Repair Robot

Figure 3.-

InoAe] UOLIBLYSHAOM SIDIAUL

-y sunbiy

28

(simul taneous)

DEFINITION PROGRAM
////,/ A \\\\\
MONITOR
DEBLG
IMMEDIATE

TELEOPERATOR //////71

Figure 5.- Hierarchy of TRICCS Operational Modes

29

1 Report No. 2 Government Accession Na 3. Recipient’s Catalog No
NASA TM-87577

4 Title and Subtitle 5 Report Date
TRICCS: A Proposed Teleoperator/Robet Integrated July 1985 -
Command and Control System for Space Applications 6Sggf;rfé§fgzﬂm"‘ ”

7. Author(s} 8. Performing Oryenizat-on Rep-ort No

Ralph W. Will

10. Work Unit No

9 Perforrming Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665 11 Contract or Grant No

13 Type of Report an? Period Covered

12 nsorin y Name and Address ;
Spo 9 Agenc Technical Memcrandum

National Aeronautics and Space Administration 14

Army Project No.
Washington, DC 20546

15. Supplementary Notes

16 Abstract

Robotic systems will play an increasingly important role in space operations.
This paper describes an integrated command and control system based on the
requirements of space-related applications and incorporating features necessary
for the evolution of advanced goal-directed robotic systems. These features include:
interaction with a world model or domain knowledge base, sensor feedback, multiple-
arm capability and concurrent operations. The system makes maximum use of manual
interaction at all levels for debug, monitoring, and operational reliability. It
is shown thet the robotic cormand and control system may most advantageously be
implemented as packages and tasks in Ada.

-

~ 3’
OF POOE ° '~
17 Ke,; Words {Suggested by Authoris)) 18 Distnibutior Statement
Robotics, Pocot Programming Languages, Unel : oieqd ; ..
Programmin.; Lanfuaces, Ausomation aclassified - Unlinited

sutject Categnry 61

-

19 Security Classit (of this report) ! 20 Secufrity Classit (0f thic nage) 21 No of Pages 22 Prce’

Unclassified Unclessified 30 A03

.For sale by the National Technical Information Service, Springfield, Virginia 22161

